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Abstract

The crystal structures of triptycene and pentiptycene secondary diamides 1 and 2 grown from methanol
solutions are reported. In addition, the crystal structure of 1 from a toluene-methanol mixed solution was
also determined. The molecular structures of 1 in both crystals are folded, and an anomalous hydrogen-
bonding chain motif is generated. On the other hand, the pentiptycene diamide 2 adopts an extended
conformation, and the amide groups do not participate in any known amide-amide hydrogen-bonding
patterns. Instead, interdigitated molecular stacking results in grid-like channels having a void volume of
ca. 25-30% of the crystal. The potential of iptycene-derived building blocks in the design of new organic
crystalline materials is thus demonstrated.

© 2000 Elsevier Science Ltd. All rights reserved.

The aromatic and three-dimensional iptycene scaffolds have recently demonstrated particular
utility in the formation of new organic materials, including chemical sensors,' liquid crystals,?
and molecular devices.> On the other hand, in crystal engineering,* taking advantage of such
structural features in the design of novel supramolecular architectures has not been extensively
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explored.>® In particular, the cavity-forming propensity of parent iptycenes’ in the solid state
has not yet led to the development of iptycene-derived nanoporous materials.® We report herein
two novel supramolecular structures created by the iptycene secondary diamides 1 and 2. While
the crystal packing of secondary diamides generally conforms to the tape or the sheet
hydrogen-bonding motif,” an anomalous chain motif is formed by the triptycene diamide 1.
Moreover, an unexpected shortage of amide-amide hydrogen-bonding was found for the
pentiptycene analogue 2. Instead, interdigitated molecular stacking generates two types of wide
and parallel channels.

Diamides 1 and 2 were synthesized from the corresponding iptycene hydroquinones'® and the
commercially available N-acetylsulfanilyl chloride under a standard Sy2 reaction condition."
Single crystals of both 1 and 2 were obtained from slow evaporation of the corresponding dilute
methanol solutions at room temperature.'' In addition, the crystal structure of 1 grown from a
toluene-methanol mixed solution was also determined.

The molecular structure of triptycene diamide 1 is folded, in which one flanking benzene ring
(designated with C in Fig. 1(a)) of the triptycene group is in proximity to the two benzene
groups (rings A and B) of the N-acetylsulfanilyl substituents. The center-to-center ring distances
of 42-4.5 A and plane-to-plane dihedral angles of 27-50° defined by the two benzene pairs
(A—C and B-C) suggest a contribution of edge-to-face arene-arene interactions'? to the folded
conformation. The folded conformation is further established by the formation of a 21-mem-
bered hydrogen-bonded ring, in which the (N)H---O distances (2.00 A) and the N-H--O and
H---O=C angles (166 and 144°, respectively) conform to the values for optimum amide—amide
hydrogen-bonding."* Consequently, an anomalous diamide hydrogen-bonding chain motif is
generated, leading to a novel supramolecular architecture looking like molecules in a tug-of-war
(Fig. 1(b) and (c)). Since such a folded and chain structure is observed in both crystals from
different solvents, it is probably the most stable form for 1 in the solid state.'* In addition, two
aspects from the comparison of the two crystal structures of 1 are worth noting. First, the
molecules of the two crystals are in an interesting relationship of a pseudo-mirror image because
of the opposite hydrogen-bonding direction. Second, the packing of neighboring chains might be
susceptible to the solvating conditions. While no solvent is included in the crystal from a
methanol solution, channels running parallel to the hydrogen-bonding (b) axis are formed in the
other case. The channels are filled with solvent molecules in a --toluene, toluene, methanol,
toluene, toluene, methanol--- sequence (Fig. 1(c)), resulting in a 1:1:0.5 of diamide 1:toluene:
methanol ratio.

Unlike the folded conformation of 1, the pentiptycene diamide 2 adopts an extended
conformation, in which the N-acetylanilyl substituents are nearly planar and parallel (Fig. 2(a)).
Furthermore, unlike the amide-amide hydrogen-bonding in 1, as well as other secondary
diamides, the amide groups in 2 do not participate in any known hydrogen-bonding net-
works.”!> Evidently the bulk of pentiptycene moieties interferes with the normal modes of
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Figure 1. (a) Two views of the crystal structure of 1 from a toluene-methanol mixed solution with benzene rings
labeled (A-D), and the hydrogen-bonding chain motif of the crystals from (b) a methanol and (c¢) toluene-methanol
mixed solutions (solvent included)

diamide hydrogen-bonding. The crystal structure, thus, appears to be mainly controlled by
molecular stacking interactions. First, an upright stacking of the pentiptycene groups along the
a axis leads to the formation of one-dimensional pillars with protruding benzene rings (Fig.
2(b)), which then interdigitates with two adjacent pillars forming zigzag two-dimensional
pentiptycene walls (Fig. 2(c)). The final structure is accomplished by an interdigitated stacking
of the N-acetylsulfanilyl groups between adjacent walls (Fig. 2(a)), creating a novel grid-like
channel network (Fig. 2(d)). A 1:6 diamide 2:methanol ratio results in the inclusion of as many
as 24 methanol molecules per unit cell, and the void space of the two different channels is
estimated to be 25-30% of the total crystal volume.'®

In conclusion, our preliminary results have demonstrated the potential of iptycene-derived
building blocks in the formation of new supramolecular architectures. Although further evi-
dences are required to gain an insight into the nonbonded forces that govern the structures of
1 and 2, it appears that the steric and aromatic features of iptycene groups dominate the
self-assembly of both diamides. Regarding the growing interest in the search of new oligomers
or polymers that adopt well-defined secondary structures in solutions, as well as in the solid

state, the folding behavior of diamide 1 may prove of value in the design of new ‘foldamers’."”
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Figure 2. Crystal packing diagrams of 2 showing (a) the extended conformation and the stacking of N-acetylsulfanilyl
substituents; (b) pentiptycene pillars; (c) the top view of zigzag pentiptycene walls and channels (solvent included),
and (d) the effective sizes of channels by a space-filling model

Moreover, the amide functionalities accessible around the channels of diamide 2 might direct
particular molecular recognition, leading to the formation of new organic clathrates. Further
study of these two and other iptycene systems are ongoing in our laboratory.
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